6,536 research outputs found

    Intersections of SLE Paths: the double and cut point dimension of SLE

    Full text link
    We compute the almost-sure Hausdorff dimension of the double points of chordal SLE_kappa for kappa > 4, confirming a prediction of Duplantier-Saleur (1989) for the contours of the FK model. We also compute the dimension of the cut points of chordal SLE_kappa for kappa > 4 as well as analogous dimensions for the radial and whole-plane SLE_kappa(rho) processes for kappa > 0. We derive these facts as consequences of a more general result in which we compute the dimension of the intersection of two flow lines of the formal vector field e^{ih/chi}, where h is a Gaussian free field and chi > 0, of different angles with each other and with the domain boundary.Comment: 70 page, 26 figure

    Stability and Fourier-Mukai Transforms on Higher Dimensional Elliptic Fibrations

    Full text link
    We consider elliptic fibrations with arbitrary base dimensions, and generalise previous work by the second author. In particular, we check universal closedness for the moduli of semistable objects with respect to a polynomial stability that reduces to PT-stability on threefolds. We also show openness of this polynomial stability. On the other hand, we write down criteria under which certain 2-term polynomial semistable complexes are mapped to torsion-free semistable sheaves under a Fourier-Mukai transform. As an application, we construct an open immersion from a moduli of complexes to a moduli of Gieseker stable sheaves on higher dimensional elliptic fibrations.Comment: 26 pages. Minor corrections. To appear in Comm. Anal. Geo

    The Taylor rule and forecast intervals for exchange rates

    Get PDF
    This paper attacks the Meese-Rogoff (exchange rate disconnect) puzzle from a different perspective: out-of-sample interval forecasting. Most studies in the literature focus on point forecasts. In this paper, we apply Robust Semi-parametric (RS) interval forecasting to a group of Taylor rule models. Forecast intervals for twelve OECD exchange rates are generated and modified tests of Giacomini and White (2006) are conducted to compare the performance of Taylor rule models and the random walk. Our contribution is twofold.> ; First, we find that in general, Taylor rule models generate tighter forecast intervals than the random walk, given that their intervals cover out-of-sample exchange rate realizations equally well. This result is more pronounced at longer horizons. Our results suggest a connection between exchange rates and economic fundamentals: economic variables contain information useful in forecasting the distributions of exchange rates. The benchmark Taylor rule model is also found to perform better than the monetary and PPP models. Second, the inference framework proposed in this paper for forecast-interval evaluation can be applied in a broader context, such as inflation forecasting, not just to the models and interval forecasting methods used in this paper.Foreign exchange ; Forecasting ; Taylor's rule ; Econometric models - Evaluation

    Solving the Boltzmann equation deterministically by the fast spectral method : application to gas microflows

    Get PDF
    Based on the fast spectral approximation to the Boltzmann collision operator, we present an accurate and efficient deterministic numerical method for solving the Boltzmann equation. First, the linearised Boltzmann equation is solved for Poiseuille and thermal creep flows, where the influence of different molecular models on the mass and heat flow rates is assessed, and the Onsager-Casimir relation at the microscopic level for large Knudsen numbers is demonstrated. Recent experimental measurements of mass flow rates along a rectangular tube with large aspect ratio are compared with numerical results for the linearised Boltzmann equation. Then, a number of two-dimensional micro flows in the transition and free molecular flow regimes are simulated using the nonlinear Boltzmann equation. The influence of the molecular model is discussed, as well as the applicability of the linearised Boltzmann equation. For thermally driven flows in the free molecular regime, it is found that the magnitudes of the flow velocity are inversely proportional to the Knudsen number. The streamline patterns of thermal creep flow inside a closed rectangular channel are analysed in detail: when the Knudsen number is smaller than a critical value, the flow pattern can be predicted based on a linear superposition of the velocity profiles of linearised Poiseuille and thermal creep flows between parallel plates. For large Knudsen numbers, the flow pattern can be determined using the linearised Poiseuille and thermal creep velocity profiles at the critical Knudsen number. The critical Knudsen number is found to be related to the aspect ratio of the rectangular channel
    • …
    corecore